HyperLogLog是Redis的高级数据结构,是统计基数的利器。前文我们已经介绍过HyperLogLog的基本用法,如果只求会用,只需要掌握HyperLogLog的三个命令即可,如果想要更进一步了解HyperLogLog的原理以及源码实现,相信这篇文章会给你带来一些启发。
基数
在数学上,基数或势,即集合中包含的元素的“个数”(参见势的比较),是日常交流中基数的概念在数学上的精确化(并使之不再受限于有限情形)。有限集合的基数,其意义与日常用语中的“基数”相同,例如{\displaystyle {a,b,c}}的基数是3。无限集合的基数,其意义在于比较两个集的大小,例如整数集和有理数集的基数相同;整数集的基数比实数集的小。
在介绍HyperLogLog的原理之前,请你先来思考一下,如果让你来统计基数,你会用什么方法。
Set
熟悉Redis数据结构的同学一定首先会想到Set这个结构,我们只需要把数据都存入Set,然后用scard命令就可以得到结果,这是一种思路,但是存在一定的问题。如果数据量非常大,那么将会耗费很大的内存空间,如果这些数据仅仅是用来统计基数,那么无疑是造成了巨大的浪费,因此,我们需要找到一种占用内存较小的方法。
bitmap
bitmap同样是一种可以统计基数的方法,可以理解为用bit数组存储元素,例如01101001,表示的是[1,2,4,8],bitmap中1的个数就是基数。bitmap也可以轻松合并多个集合,只需要将多个数组进行异或操作就可以了。bitmap相比于Set也大大节省了内存,我们来粗略计算一下,统计1亿个数据的基数,需要的内存是:100000000/8/1024/1024 ≈ 12M。
虽然bitmap在节省空间方面已经有了不错的表现,但是如果需要统计1000个对象,就需要大约12G的内存,显然这个结果仍然不能令我们满意。在这种情况下,HyperLogLog将会出来拯救我们。
HyperLogLog原理
HyperLogLog实际上不会存储每个元素的值,它使用的是概率算法,通过存储元素的hash值的第一个1的位置,来计算元素数量。这么说不太容易理解,容我先搬出来一个栗子。
有一天Jack和丫丫玩抛硬币的游戏,规则是丫丫负责抛硬币,每次抛到正面为一回合,丫丫可以自己决定进行几个回合。最后需要告诉Jack最长的那个回合抛了多少次,再由Jack来猜丫丫一共进行了几个回合。Jack心想:这可不好猜啊,我得算算概率了。于是在脑海中绘制这样一张图。
k是每回合抛到1所用的次数,我们已知的是最大的k值,可以用kmax表示,由于每次抛硬币的结果只有0和1两种情况,因此,kmax在任意回合出现的概率即为(1/2)kmax,因此可以推测n=2kmax。概率学把这种问题叫做伯努利实验。此时丫丫已经完成了n个回合,并且告诉Jack最长的一次抛了3次,Jack此时也胸有成竹,马上说出他的答案8,最后的结果是:丫丫只抛了一回合,Jack输了,要负责刷碗一个月。
终于,我们的Philippe Flajolet教授遇到了Jack一样的问题,他决心吸取Jack的教训,要让这个算法更加准确,于是引入了桶的概念,计算m个桶的加权平均值,这样就能得到比较准确的答案了(实际上还要进行其他修正)。最终的公式如图
其中m是桶的数量,const是修正常数,它的取值会根据m而变化。p=log2m
1 | switch (p) { |
我们回到Redis,对于一个输入的字符串,首先得到64位的hash值,用前14位来定位桶的位置(共有214,即16384个桶)。后面50位即为伯努利过程,每个桶有6bit,记录第一次出现1的位置count,如果count>oldcount,就用count替换oldcount。
了解原理之后,我们再来聊一下HyperLogLog的存储。HyperLogLog的存储结构分为密集存储结构和稀疏存储结构两种,默认为稀疏存储结构,而我们常说的占用12K内存的则是密集存储结构。
密集存储结构
密集存储比较简单,就是连续16384个6bit的串成的位图。由于每个桶是6bit,因此对桶的定位要麻烦一些。
1 |
|
如果我们要定位的桶编号为regnum,它的偏移字节量为(regnum 6) / 8,起始bit偏移为(regnum 6) % 8,例如,我们要定位编号为5的桶,字节偏移是3,位偏移也是6,也就是说,从第4个字节的第7位开始是编号为3的桶。这里需要注意,字节序和我们平时的字节序相反,因此需要进行倒置。我们用一张图来说明Redis是如何定位桶并且得到存储的值(即HLL_DENSE_GET_REGISTER函数的解释)。
对于编号为5的桶,我们已经得到了字节偏移_byte和为偏移_fb,b0 >> _fb和b1 << _fb8操作是将字节倒置,然后进行拼接,并且保留最后6位。
稀疏存储结构
你以为Redis真的会用16384个6bit存储每一个HLL对象吗,那就too naive了,虽然它只占用了12K内存,但是Redis对于内存的节约已经到了丧心病狂的地步了。因此,如果比较多的计数值都是0,那么就会采用稀疏存储的结构。
对于连续多个计数值为0的桶,Redis使用的存储方式是:00xxxxxx,前缀两个0,后面6位的值加1表示有连续多少个桶的计数值为0,由于6bit最大能表示64个桶,所以Redis又设计了另一种表示方法:01xxxxxx yyyyyyyy,这样后面14bit就可以表示16384个桶了,而一个初始状态的HyperLogLog对象只需要用2个字节来存储。
如果连续的桶数都不是0,那么Redis的表示方式为1vvvvvxx,即为连续(xx+1)个桶的计数值都是(vvvvv+1)。例如,10011110表示连续3个8。这里使用5bit,最大只能表示32。因此,当某个计数值大于32时,Redis会将这个HyperLogLog对象调整为密集存储。
Redis用三条指令来表达稀疏存储的方式:
- ZERO:len 单个字节表示 00[len-1],连续最多64个零计数值
- VAL:value,len 单个字节表示 1[value-1][len-1],连续 len 个值为 value 的计数值
- XZERO:len 双字节表示 01[len-1],连续最多16384个零计数值
Redis从稀疏存储转换到密集存储的条件是:
- 任意一个计数值从 32 变成 33,因为VAL指令已经无法容纳,它能表示的计数值最大为 32
- 稀疏存储占用的总字节数超过 3000 字节,这个阈值可以通过 hll_sparse_max_bytes 参数进行调整。
源码解析
接下来通过源码来看一下pfadd和pfcount两个命令的具体流程。在这之前我们首先要了解的是HyperLogLog的头结构体和创建一个HyperLogLog对象的步骤。
HyperLogLog头结构体
1 | struct hllhdr { |
创建HyperLogLog对象
1 |
|
这里sparselen=HLL_HDR_SIZE+2,因为初始化时默认所有桶的计数值都是0。其他过程不难理解,用的存储方式是我们前面提到过的稀疏存储,创建的对象实质上是一个字符串对象,这也是字符串命令可以操作HyperLogLog对象的原因。
PFADD命令
1 | /* PFADD var ele ele ele ... ele => :0 or :1 */ |
PFADD命令会先判断key是否存在,如果不存在,则创建一个新的HyperLogLog对象;如果存在,会调用isHLLObjectOrReply()函数检查这个对象是不是HyperLogLog对象,检查方法主要是检查魔数是否正确,存储结构是否正确以及头结构体的长度是否正确等。
一切就绪后,才可以调用hllAdd()函数添加元素。hllAdd函数很简单,只是根据存储结构判断需要调用hllDenseAdd()函数还是hllSparseAdd()函数。
密集存储结构只是比较新旧计数值,如果新计数值大于就计数值,就将其替代。
而稀疏存储结构要复杂一些:
- 判断是否需要调整为密集存储结构,如果不需要则继续进行,否则就先调整为密集存储结构,然后执行添加操作
- 我们需要先定位要修改的字节段,通过循环计算每一段表示的桶的范围是否包括要修改的桶
- 定位到桶后,如果这个桶已经是VAL,并且计数值大于当前要添加的计数值,则返回0,如果小于当前计数值,就进行更新
- 如果是ZERO,并且长度为1,那么可以直接把它替换为VAL,并且设置计数值
- 如果不是上述两种情况,则需要对现有的存储进行拆分
PFCOUNT命令
1 | /* PFCOUNT var -> approximated cardinality of set. */ |
如果要计算多个HyperLogLog的基数,则需要将多个HyperLogLog对象合并,这里合并方法是将所有的HyperLogLog对象合并到一个名为max的对象中,max采用的是密集存储结构,如果被合并的对象也是密集存储结构,则循环比较每一个计数值,将大的那个存入max。如果被合并的是稀疏存储,则只需要比较VAL即可。
如果计算单个HyperLogLog对象的基数,则先判断对象头结构体中的基数缓存是否有效,如果有效,可直接返回。如果已经失效,则需要重新计算基数,并修改原有缓存,这也是PFCOUNT命令不被当做只读命令的原因。
结语
最后,给大家推荐一个帮助理解HyperLogLog原理的工具:http://content.research.neustar.biz/blog/hll.html,有兴趣的话可以去学习一下。
参考阅读